CS 188: Artificial Intelligence Spring 2010

Lecture 14: Bayes' Nets 3/4/2010

Pieter Abbeel - UC Berkeley

Many slides throughout the course adapted from Dan Klein, Stuart Russell, Andrew Moore

Announcements

- Assignments
- → P3 due tonight
- W4 going out tonight
- Midterm
- 3/18, 6-9pm, 0010 Evans
 - No lecture on 3/18

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's beliefs given the evidence

- P(on time | no accidents, 5 a.m.) = 0.95
- P(on time | no accidents, 5 a.m., raining) = 0.80
- Observing new evidence causes beliefs to be updated

Inference by Enumeration						
P(sun)? = ∑ P(s,t, sun)	Toint probability					
	S	Т	W	Р	(2)	
=0.3+0.1+0.1+0.12	summer	hot	sun -	0.30	-	
= .65	summer	hot	rain	0.05	-	
 P(sun winter)	summer	cold	sun-	0.10	-	
- 0/	summer	cold	rain	0.05	-	
p(w, wita, t)	winter	hot	sun -	0.10	—	
= 0.1+0.15 Wit - 15	winter	hot	rain	0.05	<u>-</u>	
0.1 + 0.05+0.15+0.20= -50=-5	winter	cold	sun	0.15	Ø	
P(sun winter, warm)?	winter	cold	rain	0.20	-	
= P(su, unte, wan) = P(su, unter, warm) P(unte, wan) = P(su, unter, warm) P(unte, warm) = P(unter, warm, sun) + P(unter, warm) = 0.1 = 2 DT = 3						

Inference by Enumeration

- General case:
- General case:

 Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ Query* variable: QHidden variables: $H_1 \dots H_r$ We want: $P(Q|e_1 \dots e_k)$ $P(Q=q|e_1 \dots e_k)$ $P(Q=q,e_1,e_2,e_2)$ $P(Q=q,e_1,e_2,e_2)$ $P(Q=q,e_1,e_2,e_2,e_2)$
- First, select the entries consistent with the evidence
- Second, sum out H to get joint of Query and evidence:

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

- Finally, normalize the remaining entries to conditionalize
- Obvious problems:
 - Worst-case time complexity O(dⁿ)
 - Space complexity O(dⁿ) to store the joint distribution

* Works fine with multiple query variables, too

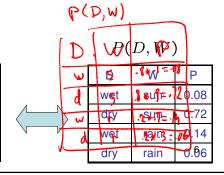
The Product Rule

Sometimes have conditional distributions but want the joint

del n. who prob.
$$P(x|y) = \frac{P(x,y)}{P(y)} \qquad \Longrightarrow \qquad \boxed{P(x,y) = P(x|y)P(y)}$$

Example:

P(D W)				
D	W	Р		
wet	sun	0.1		
dry	sun	0.9		
wet	rain	0.7		
dry	rain	0.3		



The Chain Rule

froduct rule

P(x1, 261 = P(x1. P(x1 x1)

 More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \dots x_n) = \prod_{i \in I} P(x_i | x_1 \dots x_{i-1})$$

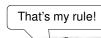
$$P(y_i, y_i) = P(y_i) P(y_i | y_i) P(y_i | y_i)$$

$$= P(y_i) P(y_i | y_i) P(y_i | y_i) P(y_i | y_i)$$
• Why is this always true?

7

Bayes' Rule

- Two ways to factor a joint distribution over two variables:
- P(x,y) = P(x|y)P(y) = P(y|x)P(x)



Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)} P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we'll see later (e.g. ASR, MT)
- In the running for most important AI equation!

Inference with Bayes' Rule

• Example: Diagnostic probability from causal probability:

$$P(\mathsf{Cause}|\mathsf{Effect}) = \frac{P(\mathsf{Effect}|\mathsf{Cause})P(\mathsf{Cause})}{P(\mathsf{Effect})}$$

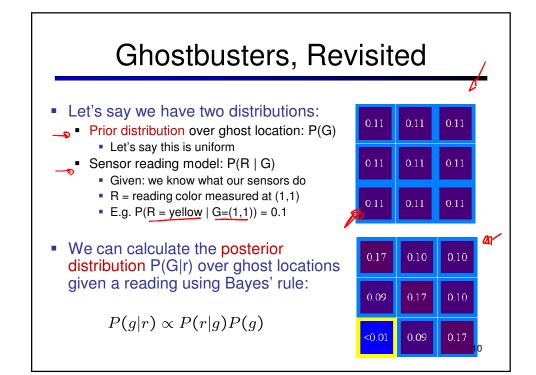
- Example:
 - * m is meningitis, s is stiff neck P(s|m) = 0.1 P(s|m) = 0.8

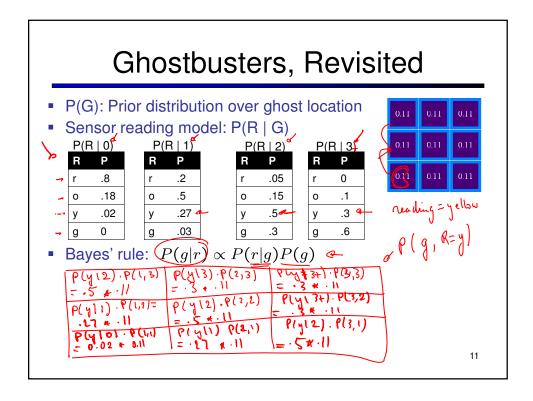
$$P(s|m) = 0.8$$

$$P(m) = 0.0001$$
Exam given

$$\underline{P(m|s)} = \frac{P(s|m) P(m) \cdot P(s)}{P(s) P(s)} \times \underbrace{0.0001^{m} P(m)}_{0.1P(s,m) + P(s,1m)} \underbrace{P(s|n) P(n)}_{t P(s|n) P(s|n)}$$

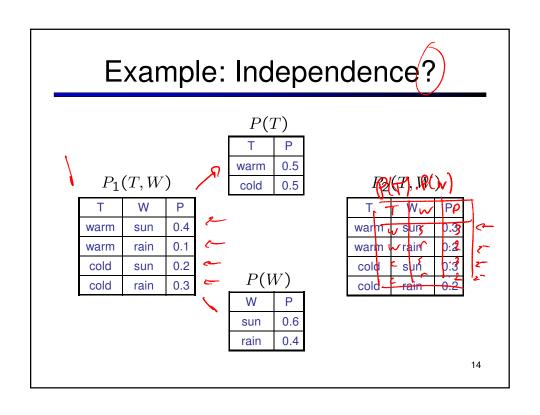
- Note: posterior probability of the hingitis still very small
- Note: you should still get still hecks checked out! Why?

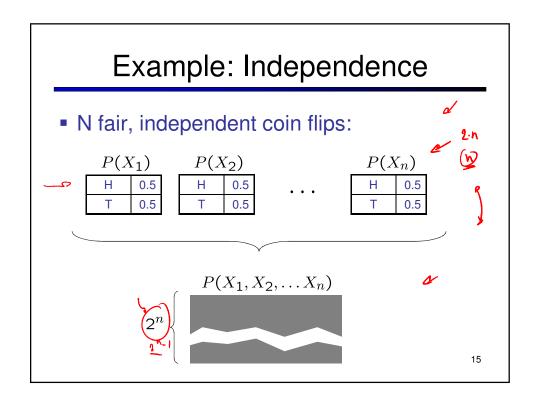




Independence

- Two variables are independent if:
- $\forall x, y : P(x, y) = P(x)P(y)$
 - This says that their joint distribution factors into a product two simpler distributions
 - Another form:
- $\forall x, y : P(x|y) = P(x) \qquad (7) \quad P(x|y) = \frac{1}{P(y)}$
 - We write: $X \perp \!\!\! \perp Y$ independence P(x) . Ply
- Independence is a simplifying modeling assumption
 - Empirical joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?





Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 George E. P. Box
- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
- Example: explanation (diagnostic reasoning)
- Example: prediction (causal reasoning)
- Example: value of information

16

Probabilistic Models

- For n variables with domain sizes d, joint distribution table with dn free parameters [recall probabilities sum to one]
- Size of representation if we use the chain rule

$$P(x_1, x_2, \dots x_n) = \prod_i P(x_i | x_1 \dots x_{i-1})$$

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments:
 - $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$ $\forall x, y, z : P(x|z, y) = P(x|z)$
 - What about this domain:
 - Traffic
 - Umbrella
 - Raining
- What about fire, smoke, alarm? F → A | ≤ (assumes A triggredly study)