CS 188: Artificial Intelligence Spring 2010

Lecture 14: Bayes' Nets
3/4/2010

Pieter Abbeel - UC Berkeley
Many slides throughout the course adapted from Dan Klein, Stuart
Russell, Andrew Moore

Announcements

- Assignments
\rightarrow P3 due tonight
\rightarrow W4 going out tonight
- Midterm
- 7 3/18, 6-9pm, 0010 Evans
- No lecture on $3 / 18$

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
- P (on time | no reported accidents) $=0.90$
- These represent the agent's beliefs given the evidence Q
- Probabilities change with new evidence: ot
- P (ontime | no accidents, 5 a.m.) $=0.95$
- P (on time | no accidents, 5 a.m., raining $)=0.80$ s
- Observing new evidence causes beliefs to be updated

Inference by Enumeration

- $P(\underline{\text { sun }}) ?=\sum_{s, t} P(s, t$, sun $)$ $=0.3+0.1+0.1+0.15$ $=.65$

$$
\left.\begin{array}{rl}
= \\
& \mathrm{P}(\text { sun } \mid \text { winter })
\end{array}\right)_{t} P(\underbrace{\text { sun, initu }, t}_{t}
$$

$$
=\frac{0.1+0.15 \sum_{\omega, t} P\left(w_{3}, \text { witu, } t\right)}{0.1+0.05+0.15+0.20}=\frac{.25}{.50}=.5
$$

$$
\text { - } P(\text { sun | winter, warm)? }
$$

Joint probabilt			
S	T	W	P
summer	hot	sun-	0.30
summer	hot	rain	0.05
summer	cold	sun-	0.10
summer	cold	rain	0.05
winter	hot	sun -	0.10
winter	hot	rain	0.05
winter	cold	sun-	0.15
winter	cold	rain	0.20

$$
=\frac{P(\text { sum, wnth, wan })}{P(\text { wisth, wann })}
$$

$$
\begin{aligned}
\frac{\text { rm) }}{\text { ran })} & =P(\text { sun, winter, watm }) \\
& =P(\text { winth, wam, sum })+P(\text { winte, wamm } \\
& =\frac{0.1}{0.1+3.05}=\frac{2}{3}
\end{aligned}
$$

Inference by Enumeration

- General case:
\rightarrow Evidence variables: $E_{1} \ldots E_{k}=e_{1} \ldots e_{k} \quad\left\{\quad X_{1}, X_{2}, \ldots X_{n}\right.$
\rightarrow Query* variable: Q
\rightarrow Hidden variables:
$H_{1} \ldots H_{r}$
$\}$ All variables
- We want: ${ }^{D} P(Q \mid \underbrace{e_{1} \ldots e_{k}}) \leftrightarrow P\left(Q=q \mid e_{1}, \ldots C_{k}\right)=\frac{P\left(Q=q, e_{1}, e_{2}, \ldots, e_{\ell}\right)}{\sum P\left(Q=q, e_{1}, e_{2}, \ldots, e_{1}\right)}$
- First, select the entries consistent with the evidence 9
- Second, sum out H to get joint of Query and evidence: \qquad
 $X_{1}, X_{2}, \ldots X_{n}$
- Finally, normalize the remaining entries to conditionalize
- Obvious problems:
$\rightarrow \quad$ - Worst-case time complexity $O\left(d^{n}\right)$
* Works fine with
- Space complexity Old) to multiple query variables, too

The Product Rule

- Sometimes have conditional distributions but want the joint del. wand pub.

$$
P(x \mid y)=\frac{P(x, y)}{P(y)} \quad \Longleftrightarrow \quad P(x, y)=P(x \mid y) P(y)
$$

- Example:

- More generally, can always write any joint distribution as an incremental product of conditional distributions

$$
P\left(x_{1}, x_{2}, x_{3}\right)=\overparen{P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right)} P\left(x_{3} \mid x_{1}, x_{2}\right) \quad \leftarrow
$$

$\longrightarrow P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)$
$P(x, y, z)=P(M P|y| x|P| z i x, y)$
$=P(y) P\left(x|y| P(z \mid x, y)=P(z) P(y \mid z) \cdot P(A) P\left(y_{1} x_{3}\right)=P(y) \cdot P\left(x_{3} \mid y\right)\right.$
$=\overline{=}$ this always true?

- Why is this always true?

Bayes' Rule

- Two ways to factor a joint distribution over two variables:
$\rightarrow P(x, y)=\widetilde{P(x \mid y) P(y)=P(y \mid x) P(x)}$

- Why is this at all helpful?
- Lets us build one conditional from its reverse
- Often one conditional is tricky but the other one is simple
- Foundation of many systems we'll see later (e.g. ASR, MT)
- In the running for most important AI equation!

Inference with Bayes’ Rule

- Example: Diagnostic probability from causal probability:
$P($ Cause \mid Effect $)=\frac{P(\text { Effect } \mid \text { Cause }) P(\text { Cause })}{P(\text { Effect })}$
- Example:

$$
\left.\begin{array}{l}
P(s(\mathrm{~lm})=0.1 d \\
P(s \mid m)=0.8 \\
\Rightarrow \\
P(m)=0.0001
\end{array}\right] \quad \begin{aligned}
& \text { Example } \\
& \text { givens }
\end{aligned}
$$

- Note: you shouldşankepsiff necks enecked out! Why?

Ghostbusters, Revisited

- Let's say we have two distributions:
\rightarrow " Prior distribution over ghost location: $\mathrm{P}(\mathrm{G})$
- Let's say this is uniform
- Sensor reading model: $P(R \mid G)$
- Given: we know what our sensors do
- $\mathrm{R}=$ reading color measured at $(1,1)$
- E.g. $\mathrm{P}(\underline{\mathrm{R}=\text { yellow } \mid \mathrm{G}=(1,1))=0.1}$

- We can calculate the posterior distribution $\mathrm{P}(\mathrm{G} \mid \mathrm{r})$ over ghost locations given a reading using Bayes' rule:

$$
P(g \mid r) \propto P(r \mid g) P(g)
$$

Ghostbusters, Revisited

- $P(G)$: Prior distribution over ghost location
- Sensor reading model: $P(R \mid G)$,

Reading $=$ yellow
${ }_{\sigma^{p}(g)(R y)}$

- Bayes' rule: $P(g \mid r) \propto P(r \mid g) P(g) \&$

Independence

- Two variables are independent if:
$\rightarrow \quad \forall x, y: P(x, y)=P(x) P(y)$
i
- This says that their joint distribution factors into a product two simpler distributions
- Another form:
$\longrightarrow \quad \forall x, y: P(x \mid y)=P(x)$
(7) $P(x, y)^{b}=\frac{P(x, y)}{P(y)}$
- We write: $X \Perp Y$ independence $=\frac{P(x) \cdot P(y)}{P(y)}$
- Independence is a simplifying modeling assumption
- Empirical joint distributions: at best "close" to independent
- What could we assume for \{Weather, Traffic, Cavity, Toothache\}?

Example: Independence?

Example: Independence

- N fair, independent coin flips:
\square

$P\left(X_{2}\right)$

	0.5
T	0.5

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are alwayssimplifications
- May not account for every variable
- May not account for all interactions between variables
- "All models are wrong; but some are useful."
- George E. P. Box
- What do we do with probabilistic models?
- We (or our agents) need to reason about unknown variables, given evidence
\rightarrow Example: explanation (diagnostic reasoning)
\rightarrow Example: prediction (causal reasoning)
\rightarrow Example: value of information

Probabilistic Models

- For n variables with domain sizes d, joint distribution tablè with dn d^{n} free parameters [recall probabilities sum to one]
- Size of representation if we use the chain rule

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i} \overparen{P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)}
$$

Concretely, counting the number of free parameters accounting for that we know probabilities sum to one:

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments:

$$
\begin{gathered}
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z) \\
\forall x, y, z: P(x \mid z, y)=P(x \mid z)
\end{gathered}
$$

- What about this domain:
- Traffic
- Umbrella

- Raining
- What about fire, smoke, alarm?

$$
F \rightarrow \S \rightarrow A
$$

